ZOJ 2562 More Divisors(高合成数)
ACM
题目地址:
题意:
求小于n的最大的高合成数,高合成数指一类整数,不论什么比它小的自然数的因子数目均比这个数的因子数目少。分析:
网上都叫它反素数,事实上我查了一下,翻素数应该是正着写倒着写都是素数的素数。这个应该叫高合成数,见高合成数有下面特征:
where p1<p2<⋯<pk are prime, and the exponents ci are positive integers. Any factor of n must have the same or lesser multiplicity in each prime: p1^d1×p2^d2×⋯×pk^dk, 0≤di≤ci, 0<i≤k 所以用回溯枚举。代码:
/** Author: illuz* Blog: http://blog.csdn.net/hcbbt* File: 2562.cpp* Create Date: 2014-08-06 20:45:53* Descripton: Highly Composite Number*/#include #include #include #include using namespace std;#define repf(i,a,b) for(int i=(a);i<=(b);i++)typedef long long ll;const int M = 1000;ll n;ll bestNum;ll bestSum;ll hcm[M][2];ll prim[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67}; // current is num, use the prim[k], sum of divisors, the limit of prim[k] you can usevoid getNum(ll num, int k, ll sum, int limit) { if (sum > bestSum) { bestSum = sum; bestNum = num; } else if (sum == bestSum && num < bestNum) { bestNum = num; } ll p = prim[k]; for (int i = 1; i <= limit; i++, p *= prim[k]) { // use i prim[k]s if (num * p > n) break; getNum(num *= prim[k], k + 1, sum * (i + 1), i); }}// clac log2(n)int log2(ll n) { int ret = 0; ll p = 1; while (p < n) { p <<= 1; ret++; } return ret;}// return the number of Highly Composite Number in [1, n]// and save the HCM in hcm[][2]int gethcm() { int ret = 0; n = 500000; // [1, n] while (n > 0) { bestNum = 1; bestSum = 1; getNum(1, 0, 1, log2(n)); cout << bestNum << ' ' << bestSum << endl; hcm[ret][0] = bestNum; hcm[ret][1] = bestSum; n = bestNum - 1; ret++; } return ret;}int main() { while (cin >> n) { bestNum = 1; bestSum = 1; getNum(1, 0, 1, 50); cout << bestNum << endl; }}